Deep Reinforcement Learning for Traffic Light Control in Vehicular Networks
نویسندگان
چکیده
Existing inefficient traffic light control causes numerous problems, such as long delay and waste of energy. To improve efficiency, taking real-time traffic information as an input and dynamically adjusting the traffic light duration accordingly is a must. In terms of how to dynamically adjust traffic signals’ duration, existing works either split the traffic signal into equal duration or extract limited traffic information from the real data. In this paper, we study how to decide the traffic signals’ duration based on the collected data from different sensors and vehicular networks. We propose a deep reinforcement learning model to control the traffic light. In the model, we quantify the complex traffic scenario as states by collecting data and dividing the whole intersection into small grids. The timing changes of a traffic light are the actions, which are modeled as a high-dimension Markov decision process. The reward is the cumulative waiting time difference between two cycles. To solve the model, a convolutional neural network is employed to map the states to rewards. The proposed model is composed of several components to improve the performance, such as dueling network, target network, double Q-learning network, and prioritized experience replay. We evaluate our model via simulation in the Simulation of Urban MObility (SUMO) in a vehicular network, and the simulation results show the efficiency of our model in controlling traffic lights.
منابع مشابه
Intelligent Traffic Light Control
Vehicular travel is increasing throughout the world, particularly in large urban areas. Therefore the need arises for simulating and optimizing traffic control algorithms to better accommodate this increasing demand. In this paper we study the simulation and optimization of traffic light controllers in a city and present an adaptive optimization algorithm based on reinforcement learning. We hav...
متن کاملVehicular Ad Hoc Networks
With vehicular ad hoc networks gaining an ever-increasing interest to serve a diverse variety of applications in today’s intelligent transportation systems, it was not at all surprising for the guest editorial team to receive a handful of submissions for this special issue addressing different aspects and test-beds of vehicular networks. In sum, 8 papers were accepted to be published in the spe...
متن کاملMultiobjective Reinforcement Learning for Traffic Signal Control Using Vehicular Ad Hoc Network
We propose a newmultiobjective control algorithm based on reinforcement learning for urban traffic signal control, namedmultiRL. A multiagent structure is used to describe the traffic system. A vehicular ad hoc network is used for the data exchange among agents. A reinforcement learning algorithm is applied to predict the overall value of the optimization objective given vehicles’ states. The p...
متن کاملTraffic Light Control Using Deep Policy-Gradient and Value-Function Based Reinforcement Learning
Recent advances in combining deep neural network architectures with reinforcement learning techniques have shown promising potential results in solving complex control problems with high dimensional state and action spaces. Inspired by these successes, in this paper, we build two kinds of reinforcement learning algorithms: deep policy-gradient and value-function based agents which can predict t...
متن کاملThird-order Decentralized Safe Consensus Protocol for Inter-connected Heterogeneous Vehicular Platoons
In this paper, the stability analysis and control design of heterogeneous traffic flow is considered. It is assumed that the traffic flow consists of infinite number of cooperative non-identical vehicular platoons. Two different networks are investigated in stability analysis of heterogeneous traffic flow: 1) inter-platoon network which deals with the communication topology of lead vehicles and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018